Spatial and seasonal variability of water-soluble ions in PM2.5 aerosols in 14 major cities in China
نویسندگان
چکیده
We analyzed PM2.5 aerosols from 14 major cities in China for concentrations of water-soluble (WS) major and trace elements (Na, Mg, Ca, K, Fe, Mn, Zn, Rb, Sr, Ba, Pb, S and Cl). The main focus was to examine patterns in spatial distribution and seasonal variability. Using principal component analysis, we identified three general sources for WS-elements in aerosols as anthropogenic, seasalts and fine dust particles originating from soils. The spatial patterns identified show that anthropogenic activity is the most important factor influencing the concentration of heavy metals in aerosols. Concentrations of WS-S, Zn and Pb were correlated with the locations of major industrial zones, and regulated by topography and seasonal weather patterns. We found higher WS-metals concentrations during the winter season, probably related to coal combustion in northern China. Moderate correlations of WS-S, Zn, Pb and Cl suggest that coal combustion releases. The seasonal pattern in WS-Fe concentrations shows the importance of acid precipitation events where coal combustion contributes to additional Fe (II) deposition. The findings of this study support the argument that WS-S in fine particles enhanced the production of hydrogen ions act to reduce the pH values of precipitation. Our interpretation of these spatial and seasonal patterns in WS-major and trace elements in aerosols highlights the need for continued research on trends in acidic deposition in major industrial cities in China. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Seasonal and spatial variability of the OM/OC mass ratios and high regional correlation between oxalic acid and zinc in Chinese urban organic aerosols
We calculated the organic matter to organic carbon mass ratios (OM/OC mass ratios) in PM2.5 collected from 14 Chinese cities during summer and winter of 2003 and analyzed the causes for their seasonal and spatial variability. The OM/OC mass ratios were calculated two ways. Using a mass balance method, the calculated OM/OC mass ratios averaged 1.92± 0.39 year-round, with no significant seasonal ...
متن کاملHigh Contributions of Secondary Inorganic Aerosols to PM2.5 under Polluted Levels at a Regional Station in Northern China
Daily PM2.5 samples were collected at Shangdianzi (SDZ) regional site in Beijing-Tianjin-Hebei (BTH) region in 2015. Samples were subject to chemical analysis for organic carbon (OC), elemental carbon (EC), and major water-soluble inorganic ions. The annual average PM2.5 mass concentration was 53 ± 36 μg·m-3 with the highest seasonal average concentration in spring and the lowest in summer. Wat...
متن کاملSpatial and seasonal variability of PM2.5 acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols
Aerosol acidity is one of the most important parameters influencing atmospheric chemistry and physics. Based on continuous field observations from January 2005 to May 2006 and thermodynamic modeling, we investigated the spatial and seasonal variations in PM2.5 acidity in two megacities in China, Beijing and Chongqing. Spatially, PM2.5 was generally more acidic in Chongqing than in Beijing, but ...
متن کاملPM2.5 pollution in a megacity of southwest China: source apportionment and implication
Daily PM2.5 (aerosol particles with an aerodynamic diameter of less than 2.5 μm) samples were collected at an urban site in Chengdu, an inland megacity in southwest China, during four 1-month periods in 2011, with each period in a different season. Samples were subject to chemical analysis for various chemical components ranging from major water-soluble ions, organic carbon (OC), element carbon...
متن کاملCharacteristics and seasonal variations of PM2.5, PM10, and TSP aerosol in Beijing.
OBJECTIVE To investigate the seasonal characteristics and the sources of elements and ions with different sizes in the aerosols in Beijing. METHODS Samples of particulate matters (PM2.5), PM10, and total suspended particle (TSP) aerosols were collected simultaneously in Beijing from July 2001 to April 2003. The aerosol was chemically characterized by measuring 23 elements and 18 water-soluble...
متن کامل